Mechanisms That Allow Embryonic Stem Cells to Become Any Cell in the Human Body Identified

July 18, 2012
From ScienceDaily

New research at the Hebrew University of Jerusalem sheds light on pluripotency — the ability of embryonic stem cells to renew themselves indefinitely and to differentiate into all types of mature cells. Solving this problem, which is a major challenge in modern biology, could expedite the use of embryonic stem cells in cell therapy and regenerative medicine.

If scientists can replicate the mechanisms that make pluripotency possible, they could create cells in the laboratory which could be implanted in humans to cure diseases characterized by cell death, such as Alzheimer’s, Parkinson’s, diabetes and other degenerative diseases.

To shed light on these processes, researchers in the lab of Dr. Eran Meshorer, in the Department of Genetics at the Hebrew University’s Alexander Silberman Institute of Life Sciences, are combining molecular, microscopic and genomic approaches. Meshorer’s team is focusing on epigenetic pathways — which cause biological changes without a corresponding change in the DNA sequence — that are specific to embryonic stem cells.

The molecular basis for epigenetic mechanisms is chromatin, which is comprised of a cell’s DNA and structural and regulatory proteins. In groundbreaking research performed by Shai Melcer, a PhD student in the Meshorer lab, the mechanisms which support an “open” chromatin conformation in embryonic stem cells were examined. The researchers found that chromatin is less condensed in embryonic stem cells, allowing them the flexibility or “functional plasticity” to turn into any kind of cell.

A distinct pattern of chemical modifications of chromatin structural proteins (referred to as the acetylation and methylation of histones) enables a looser chromatin configuration in embryonic stem cells. During the early stages of differentiation, this pattern changes to facilitate chromatin compaction.

But even more interestingly, the authors found that a nuclear lamina protein, lamin A, is also a part of the secret. In all differentiated cell types, lamin A binds compacted domains of chromatin and anchors them to the cell’s nuclear envelope. Lamin A is absent from embryonic stem cells and this may enable the freer, more dynamic chromatin state in the cell nucleus. The authors believe that chromatin plasticity is tantamount to functional plasticity since chromatin is made up of DNA that includes all genes and codes for all proteins in any living cell. Understanding the mechanisms that regulate chromatin function will enable intelligent manipulations of embryonic stem cells in the future.

“If we can apply this new understanding about the mechanisms that give embryonic stem cells their plasticity, then we can increase or decrease the dynamics of the proteins that bind DNA and thereby increase or decrease the cells’ differentiation potential,” concludes Dr. Meshorer. “This could expedite the use of embryonic stem cells in cell therapy and regenerative medicine, by enabling the creation of cells in the laboratory which could be implanted in humans to cure diseases characterized by cell death, such as Alzheimer’s, Parkinson’s, diabetes and other degenerative diseases.”

View original article

Diabetes Drug Makes Brain Cells Grow

July 5, 2012
From ScienceDaily

The widely used diabetes drug metformin comes with a rather unexpected and alluring side effect: it encourages the growth of new neurons in the brain. The study reported in the July 6th issue of Cell Stem Cell, a Cell Press publication, also finds that those neural effects of the drug also make mice smarter.

The discovery is an important step toward therapies that aim to repair the brain not by introducing new stem cells but rather by spurring those that are already present into action, says the study’s lead author Freda Miller of the University of Toronto-affiliated Hospital for Sick Children. The fact that it’s a drug that is so widely used and so safe makes the news all that much better.

Earlier work by Miller’s team highlighted a pathway known as aPKC-CBP for its essential role in telling neural stem cells where and when to differentiate into mature neurons. As it happened, others had found before them that the same pathway is important for the metabolic effects of the drug metformin, but in liver cells.

“We put two and two together,” Miller says. If metformin activates the CBP pathway in the liver, they thought, maybe it could also do that in neural stem cells of the brain to encourage brain repair.

The new evidence lends support to that promising idea in both mouse brains and human cells. Mice taking metformin not only showed an increase in the birth of new neurons, but they were also better able to learn the location of a hidden platform in a standard maze test of spatial learning.

While it remains to be seen whether the very popular diabetes drug might already be serving as a brain booster for those who are now taking it, there are already some early hints that it may have cognitive benefits for people with Alzheimer’s disease. It had been thought those improvements were the result of better diabetes control, Miller says, but it now appears that metformin may improve Alzheimer’s symptoms by enhancing brain repair.

Miller says they now hope to test whether metformin might help repair the brains of those who have suffered brain injury due to trauma or radiation therapies for cancer.

View original article